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Abstract

Tracking an object in a sequence of images can fail due
to partial occlusion or clutter. Robustness can be increased
by tracking a set of “parts”, provided that a suitable set
can be identified. In this paper we propose a novel segmen-
tation, specifically designed to improve robustness against
occlusion in the context of tracking. The main result shows
that tracking the parts resulting from this segmentation out-

performs both tracking parts obtained through traditional’

segmentations, and tracking the entire target. Additional
results include a statistical analysis of the correlation be-
tween features of a part and tracking error, and identifying
a cost function highly correlated with the tracking error.

1 Introduction

Tracking a known object in a sequence of frames can
fail due to occlusion or the presence of clutter. Robustness
against these effects can be increased by using robust es-
timators [1, 8, 21, 26]. However, these estimators usually
break down at above a 30% occlusion level[2]. This is illus-
trated in Figure 1(a)!, where an affine transformation com-
bined with a robust estimator was used to track a bus in a
traffic sequence. As shown there, the algorithm begins to
lose track of the target in Frame 14.

This effect can be traced to the fact that robust estimators
treat occluding pixels as uniformly distributed outliers; ne-
glecting the fact that occlusion tends to be clustered in small
regions. Thus, intuitively one would expect that resiliency
to occlusion could be improved by dividing the object into
pieces which are tracked separately, along with the entire
object, to find multiple transformations. The best global
transformation is then selected by voting [30). However,
homogeneous pieces are more difficult to track than regions
with distinctive properties such as texture or shape?. Thus,
standard segmentations (see for instance [29, 15, 18, 17, 28]

YThis sequence of traffic images was provided by Dr. Nagel at the
Universitat Karlsruhe.

2This is closely related to the well known aperture problem.
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Figure 1. Tracking (a) using a robust affine transforma-
tion; (b) using homogeneous parts.

and references therein) do not necessarily result in parts
leading to good tracking performance. This is illustrated
in Figure 1(b) where the use of a set of homogeneous parts
(an MDL-based segmentation [15] of the bus) leads to poor
tracking starting in Frame 2. Motivated by this difficulty, in
this paper we address the problem of how to divide the ob-
jectinto pieces to optimize tracking robustness to occlusion.
Specifically, the contributions of the paper are:

e A statistical analysis of the correlation between fea-
tures of a part and tracking error.

o Identifying a cost function that exhibits a higher de-
gree of correlation with the tracking error than other
indicators previously proposed.

e A segmentation algorithm specifically designed to
make optimal use of the spatial information available
to improve tracking robustness. This segmentation is
obtained by combining this new cost function with the
standard “snakes” framework [24, 29].
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Figure 2. The PRA Algorithm.

2 Preliminaries
2.1 Notation and mathematical preliminaries

In the sequel we will denote by x = (z y)” the co-
ordinates of a pixel; J(x) the greyscale intensity at pixel x;
I.(x) and I,(x) the corresponding spatial derivatives; and
by @ € R® the parameters of an affine transformation Ag.

2.2 The tracking problem

For simplicity, in this paper we consider a prototype
tracking algorithm based on estimating the transformation
that maps the images of a given object between two consec-
utive frames in a sequence. However, our results can also
be used in the context of tracking algorithms that exploit, in
addition to spatial, temporal information [3, 19].

Assuming that there is little distortion, the mapping be-
tween consecutive frames can be considered to be affine
[2, 4, 9, 14]. This fact can be exploited to efficiently solve
the tracking problem by recasting it as [2]:

Problem 1 (Robust Affine Tracking:) Given two image
frames 1T+ and 113, and a prototype object represented by
a subset of pixels P C I%:, find an affine transformation
Aq : It o I that minimizes:

RA) = p {1 Aa()]-T%(x),0} (1)

xEP

where p(., ) is a robust estimator [1, 2] that rejects outliers,
controlled by the tuning parameter 6.

Problem 1 can be solved using gradient descent (in the
sequel we will refer to this as the Benchmark Algorithm).
However, as illustrated in Figure 1, this approach may fail
in the presence of severe occlusion.

2.3 The Parts Reset Algorithm (PRA)

Since occlusion is a localized effect, robustness against
severe occlusion can be improved by partitioning the proto-
type into a number IV of parts and estimating IV candidate
affine transformations Aq,, 7 = 1, ..., N, by tracking these

parts [30]. A single transformation .A, may be selected
from the candidate transformations by a voting scheme.
Further improvement can be obtained by evaluating the per-
formance of each transformation at intermediate stages and
resetting those that exhibit large errors, thus evading local
minima. This effect is illustrated in Figure 2 (¢) showing the
tracking results for an algorithm based upon this idea. Here
severe occlusion is simulated by cutting off a portion of the
object Van, pasting it to a cluttered background and adding
zero-mean additive white Gaussian noise with variance 5.

3 Good Features for Tracking

While the approach described in the previous section has
the potential to handle substantial occlusion, it hinges upon
determining a suitable set of parts to be tracked. Possible
options span a very diverse spectrum from dividing the ob-
ject image by using a simple grid, to segmenting the ob-
ject into homogeneous regions, to dividing the object into
its “functional” parts. While the first option is the sim-
plest partition and the latter options are intuitively appeal-
ing, they are not necessarily the best partitions for the ap-
plication being considered. In this section we analyze the
correlation between different features of a part and track-
ing performance. Based on this analysis, we propose a new
segmentation, designed to optimize tracking robustness.

3.1 Performance of several indicators

Several ways of assessing the “goodness” (in the sense
of its ability to minimize the tracking error) of a part have
been proposed in the literature, based on spatial derivatives,
image Laplacian or the eigenvalues of the matrix

212 2?11, zyI? azyll, «I? zI.I,
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Table 1 summarizes the most commonly used indicators
{20, 7, 22, 23]. Here a higher value of the criterion indi-
cates a part that is thought to be more suitable for tracking.

To establish the performance of these features as indica-
tors of good tracking we conducted a set of experiments to
find the correlation between the indicators values and track-
ing error. To this effect we considered a set of parts of vary-
ing size, shape, and texture cut from real images and ran a
series of tests on each part. These parts bear interesting fea-
tures used for comparison, namely large regions with ho-
mogeneous texture (such as the faces of a box) as well as
regions with contrast texture (such as corners and holes).
Each experiment consisted of the following steps:
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Table 1. Indicators for good tracking commonly used.

| Description Definition

intensity variance vary = Y, (I(x) — nr)?
xEP

gradient grad = Y IZ(x)+ I;(x)

xEP

normalized gradient | gradn = 75y >, I2(x) + I/ (x)
xEP

normalized laplacian | lap, =

T 2 e ) T

max. abs. eigenvalue | mazw = max; ||, Wv; = \u;

min. abs. eigenvalue | miny = mimlA,l Wo; = A\v;

norm eigenvalues normw = 3. A2, Wu; = \v;

ratio eigenvalues ratwy = ﬂﬂ
Table 2. Test poses.
level of translation | rotation | number
difficulty (pixels) (radians) | of poses
easy 3 0.00 8
moderate 7 0.00 8
difficult 3 0.15 16
challenging 4 0.18 16

1. Select a part P and a random background B with uni-
form grayscale distribution between 0 and 255.

2. Transform the prototype of the part P from the identity
pose, Ag(x) = x, to a test pose Ay(x) = x’ and
“paste” it onto background B.

3. Corrupt the resulting scene with zero-mean additive
white Gaussian noise with variance 5.

4. Run the tracking algorithm to compute an estimated

pose, As.

5. Find the corresponding ground-truth tracking error
defined as:
1
d(Aq; As|P, B) === " || (%)~ Aa(x)ll2 (3)
(P57
where ((P) denotes the number of pixels of part P.

A total of 19200 experiments were performed using 40
parts, P; pasted onto 10 128 x 128 random backgrounds
B; and under 48 different affine transformations ay. These
transformations correspond to the translations and rotations
indicated in Table 2, where a translation 7 summarizes the
eight directions adjacent to a pixel, x0=-7, yO=-7; x0=-
7, y0=0; x0=-7, yO=7; etc; and the rotation denotes both
clockwise and counter—clockwise motion. The range of dis-
placements shown in Table 2 was chosen to cover problems
ranging from easy to challenging.

The overall performance of a part P is obtained by sum-
ming over the 48 poses and ten backgrounds to compute the

Table 3. Correlation between indicators and tracking error

indicator || Correlation
vary -0.3169
grad -0.2766
grady, -0.0271
lap, -0.1705
mazw -0.3228
minwy -0.3143
normw -0.3042
ratw -0.1915
- proposed -0.7963
total error, D(P) associated with it:
10 48
D(P) =YY" d(Aa,,As|P, B)) )
i=1k=1

A potential problem when using equation (4) to assess
the quality of part P is that a few outliers can signifi-
cantly bias the cumulative performance of the part. To
avoid this situation we proceeded as follows. Through the
use of Kolmogorov—Smirnov test [16] we determined that,
with probability > 0.75, the distribution of the experiments
yielding lowest values of the error is an F' distribution (the
ratio of two random variables with x2 distribution) with pa-
rameters v; = 16 and v = 4. Since for this distribution,
F(d) = 0.95 for the error value d = 5.8, all points above
this value were considered outliers and assigned an error
value of d = 5.8%. With this saturation the total error of a
part ranges from 0 (perfect) to 2784 (poor matching).

The correlation coefficient opy between the 40-
dimensional vectors D of tracking errors and J of indica-
tor values defined in Table 1 are given in the top portion
of Table 3. Unfortunately, all of them have small absolute
value, indicating that the performance of these indicators as
predictors of good tracking properties is rather poor.

3.2 Performance oriented indicator

To find an indicator more correlated with tracking per-
formance we begin by examining the gradient with respect
to the affine transformation parameters of equation (1) used
to perform the search for the affine parameters:

VoR=Y 9p(r(x),0) g _p(x) = )

ey 8r(x)

Z Zapgr((x ))’ Vrt 'y 1 (x') o () yIl (') wIE ') 2B )]

i=1xEP;

3Values about this threshold correspond to cases where there is a large
mismatch between the actual and calculated poses. In this situation the

 numerical value of the error is more a function of the background than of

the disparity between poses.
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where 7(x) = I [As(x)] — IP(x), P = [ij P;and P; N

P;=0fori#j.

Equation (5) shows that, as expected, parts that have
large spatial derivatives I, and I, as well as large momenta
zI;, yI,, yI, and &I, result in larger gradient of the objec-
tive function in (1) and thus in a faster convergence towards
the optimum set of affine parameters. However, consis-
tent numerical experience indicates that performance does
not improve once the gradient components exceed a certain
threshold. Based on these considerations we propose to use
as an indicator of good tracking properties the erergy of a
part P, defined as:

e(P) = sat[ez(P),esat] + sat [ey(P), e5a¢)
+  sat[ezq(P), €yap] + 58t [eyy (P), €0e]  (6)
+ sat [eyz (P), elaat] + sat [ezy (P), €4at)
where

eu(P) = Z sat [I2(x), I at)

xeP
ewo(P) = Z |v — Tuo| sat [I2(x), Lyat) ,
xeP
1
Tuo = —= > usat [I3(x), L,
es(P) ,;, [ ( t]
Q)
sat[.,.] is the saturation operator defined by
£ lf c< Csat
—_ Caa: e
sable, Coar] = { I ife> Csat

and where 7z, Tyy, Myz and 7., are used to center the mo-
menta to render the energy coordinate independent.

The parameters I,q:, €4q¢, and €,, are additional de-
grees of freedom that can be used to optimize the corre-
lation between the tracking error E and the energy e(P).
For the set of 19200 experiments described at the begin-
ing of the section, the optimal values of these parameters
were found to be I,q: = 3000, €,4¢ = 50, and €),,, = 700
respectively. The corresponding indicator e(P) is highly
correlated with the tracking error, with correlation coeffi-
cient o p. = —0.7963%. Note that this value is substantially
larger than the other entries in Table 3.

4 Object Segmentation for Tracking

In the last section we identified an indicator that exhibits
a high degree of correlation with the expected performance

4The negative value here indicates that larger values of the energy lead
to smaller values of the tracking error. Computing the median rather than
the average over all experiments for a part P in (4) also yields a high
coefficient o p. = —0.7505.

of the part in a gradient-based tracking algorithm. Thus,
tracking performance can be optimized by finding a parti-
tion of the object that minimizes this indicator value. In
this section we describe how to accomplish this by incorpo-
rating the energy (6) of a part into a deformable model or
snake framework [24].

4.1 Snake Description

A snake is an ordered set of points § = [y, 82,..., 8]
that can form either open or closed contours. A snake seg-
mentation algorithm moves the snake on the image grid
seeking to minimize an energy function:

E= i Eint(si) + Eezt(si)

i=1

where the internal force E;,; imposes continuity and
smoothness constraints to avoid oscillations of the contours,
and the external force E..; attracts the snake to salient im-
age features.

Let s be a point on the snake, U, be the subset of points
on the snake adjacent to s, and V;, be the set of parts de-
fined by the snake that have s as a contour point. Then, the
internal energy at the point s, F;,(s), is defined as:

Egnt(s)mﬂ%)f {(=s — z)% + (yo — ye)*} +

8 min {(zt -2z, + 314)2 + (ye — 2y, + y‘u)z}
t,uclU,
where the first term ensures that points on the snake do not
get too far from each other, the second term penalizes high
curvature contours, and o and 3 control the relative influ-
ence of the corresponding terms.

As discussed in the previous section, for a tracking ap-
plication, the external force at the point s, E,.:(s), should
attract the snake towards enclosing parts with high tracka-
bility indicator values. Thus, the external force is defined

as.
Eezt(s) =7 Z e(P)
Pev,
where e(P) is the trackability indicator for part P as defined
in equation (6) 5.

4.2 Snake Initialization

A snake in the form of a square grid placed on the object
performs the initial segmentation, dividing it into a number
of parts. (Other grids could serve as well, triangular, etc.)

5For a correct implementation of the segmentation method, the contri-
bution of each energy term must be normalized by dividing the term by
the largest value in the neighborhood where the snake point can move:

m:‘%ﬁ)—m, where N (s) is the set of pixels in a neighborhood of s.
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We attempt to find the global minimum of the energy

through a greedy search. The search resembles the segmen- |

tation algorithm described in [29] through region competi-
tion based on snakes which guarantee closed parts, employ-
ing statistics inside the region rather than just information
along the region boundary, and global optimization tech-
niques based on an energy function.

4.3 Minimization of the Energy

The experimental results shown in section 3.2 indicate
that a “good” segmentation for tracking can be obtained by
maximizing the “energy” of the parts. However, simply
maximizing this energy may lead to a segmentation com-
posed of just a few large parts, or, in extreme cases, to a
trivial solution with just one part. Clearly these solutions are
undesirable in terms of robustness to occlusion. Moreover,
as was the case in section 3.2, consistent experience shows
that once the energy components of a part rise above a given
threshold, little improvement in tracking performance is ob-
tained by increasing them even further. Rather, performance
can be improved by attempting to increase the energy com-
ponents of the remaining parts above that threshold. Finally,
note that the problem is non—convex and thus the minimiza-
tion algorithm may get trapped in a local minima. To take
these effects into account, rather than attempting to maxi-
mize the raw energy, we wil optimize the following filtered
versions of the energy components:

Eear(s)=—7 D é(P) ®)

PeV,
where

~ eaa eaa
é(P) = f(ez(P), esats = EA) + f(ey(P), €saty =22 2)
aat sat

+ f(ez=(P), e:at? A)+ .f(eyy (P), e,sa.tr A) )]
+ fleye(P), €hats A) + fezy(P)s €402, A)

and
1

1+ exp-/\(c—c.,,g) '

The parameter A controls the shape of the filter and in the
limit when A — oo it forces all the parts to have an energy
above ¢4 (since f(c, sat,00) = 0 for ¢ < cgq¢). By in-
creasing A from 0 to co as the minimization proceeds we
achieve an effect similar to simulated annealing [5], that
minimizes the probability of converging to a local mini-
mum. This process is illustrated in Table 4, showing three
stages of the segmentation algorithm. Here we used the val-
ues a = 3 = g4 = 1.0, giving equal weight to the eight
energy components,

The final segmentation is shown in Figure 3. Since the
low energy content is concentrated in the upper portion of

f(C, Csat) )‘) = (10)
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Table 4. Segmentation of Cylinder for three values of A

A=0.01 A=1.0 A=10.0

the object, the segmentation distributes this portion amongst
the three parts. Although Part 2 and Part 3 share the lower
portion, Part 3 grows much larger than Part 2. However as
far as energy, they have about the same amount since the
upper portion is divided about evenly between them.

The high energy of the lower portion forces the two parts
which share it to be elongated. An alternative partition may
have created an additional bottom part taking from Part 2
and Part 3 (for a total of four), with virtually no energy,
thus creating a bad part. As we will show in section 5, an
abundance of bad parts proves as detrimental to the PRA as
a lack of good parts. ’

Part 1 Part 2

Part 3

Figure 3. Cylinder segmentation.

5 Tracking Results

In this section we report the results of a series of experi-
ments comparing tracking performance of the PRA when
using the proposed parts versus homogeneous parts ob-
tained using a Mininum Description Length based algo-
rithm {15]. For comparison purposes, we also include the
tracking performance of the Benchmark algorithm.

These experiments were performed using six toy objects
that exhibit interesting features, namely large regions with
homogeneous texture as well as regions with contrast tex-
ture, supplemented with ten objects taken from real tracking
sequences. As in section 3, for each of the .16 test objects
we performed 480 tests:

1. 16 “challenging” poses of Table 2,

2. five cluttered backgrounds (similar to Figure 2 (b),
containing objects with similar texture to the test ob-
jects, and the scene corrupted by zero—mean additive
white Gaussian noise with variance 5), and



3. six translations of 50% occlusion (measured in the
number of prototype pixels).

The resulting scores, ranging from zero to 2784, are shown
in Table 5.

Table 5. Comparison between the tracking algorithms.

Object (a) Benchmark (b) PRA with | (c) PRA with

homogeneous parts prop. parts
Block 2648.756 2112.312 1758.192
Log 2299.223 2077.602 1665.434
Box 2231.747 2029.325 1301.574
Cylinder 2012.668 2061.614 1186.690
Van 2537.833 2555.088 1404.820
Truck 1929.924 1580.622 788.190
Car 1908.622 1200.242 859.233
Car2 2099.368 1902.682 994.273
Compact 2737.885 2446.042 2298.574
Compact 2 2603.391 2342.972 1908.958
Bus 2616.033 2119.049 1196.824
Race 2446.529 1802.315 1700.237
Wagon 2469.425 1881.417 1051.092
Wagon 2 2111.319 1833.022 900.994
Car 3 2084.411 2149.430 844.964
Cadillac 1965.081 1776.500 677.095

The PRA with the proposed parts (c) outperforms both
the Benchmark algorithm (a) and the PRA with homoge-
neous parts (b) for each of the test objects.

o (c) outperforms (a) by up to 51% on an absolute scale
(Bus,Wagon) and 190% on a relative scale (Cadillac),
and .

e (c) outperforms (a) on average by 36% on an absolute
scale and by 95% on a relative scale.

e (c) outperforms (b) by up to 47% on an absolute scale
(Car_3) and 162% on a relative scale (Cadillac), and

e (c) outperforms (b) on average by 25% on an absolute
scale and by 69% on a relative scale.

It is worth noticing that (a) outperforms (b) in some occa-
sions, illustrating again that using an homogenous segmen-
tation can lead to worse results than not using parts at all.

Frame 19

Frame 14

Frame 2

Figure 4. Tracking the bus using the proposed segmenta-

tion.

Figure 4 shows the results of using the proposed seg-
mentation on the bus sequence. In this case the algorithm
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is able to successfully track the target throughout the entire
sequence until the film ends at about 60% occlusion.

#

Frame 0

Frame 8

Frame 17

Frame 28 ’
(@) ® ()

Figure 5. Compact sequence: (a) Object. (b) Homoge-
neous parts. (c) Proposed segmentation.

Finally, Figure 5 shows experimental results obtained
with the Compact sequence®. In this case, using homoge-
neous parts leads to poor tracking after Frame 8: the mild
occlusion caused by the traffic sign compresses a “bad” part
into its unoccluded portion in order to minimize the error
norm, and the object follows. The part continues to com-
press the object in the subsequent frames and eventually
loses track of it completely. The traffic sign does not affect
(a) and (c) at all, however by Frame 17 at about 30% occlu-
sion (a) has begun to lose track of the object, while (c) suc-
cessfully tracks the object throughout the entire sequence
until it is last visible in Frame 28 at about 90% occlusion.

6 Conclusions

Many tracking algorithms used widely in the computer
vision community deal with occlusion through a robust es-
timator. Such estimators fare well with moderate occlusion,
but break down at above 30% occlusion level. To expand
this range, in {30] we have proposed to track, in addition to
the object, a set of parts. Intuitively, this idea exploits the
fact that occlusion tends to be localized, and thus successful
tracking can be accomplished as long as a few of these parts

6 Additional experiments, omitted for space reasons, can be obtained
contacting the authors.



exhibit less than 30% occlusion. However, as illustrated
with several examples, successful application of this idea
requires a suitable object segmentation. In this paper we
have identified desirable properties (from a robust tracking
standpoint) for the parts and proposed an energy function to
obtain these parts by solving an optimization problem. Ex-
perimental results with both synthetic and real images show
that, when used in a context of a tracking algorithm, these
parts outperform those obtained using traditional segmenta-
tion methods.
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