A Standard Measure of Mobility for Evaluating Mobile Ad Hoc Network Performance

Byung-Jae KWAK(a), Regular Member, Nah-Oak SONG†, and Leonard E. MILLER†, Nonmembers

SUMMARY The performance of a mobile ad hoc network (MANET) is related to the efficiency of the routing protocol in adapting to changes in the network topology and the link status. However, the use of many different mobility models without a unified quantitative “measure” of the mobility has made it very difficult to compare the results of independent performance studies of routing protocols. In this paper, a mobility measure for MANETs is proposed that is flexible and consistent. It is flexible because one can customize the definition of mobility using a remoteness function. It is consistent because it has a linear relationship with the rate at which links are established or broken for a wide range of network scenarios. This consistency is the strength of the proposed mobility measure because the mobility measure reliably represents the link change rate regardless of network scenarios.

key words: mobility measure, mobile ad-hoc network, mobility model, routing protocol

1. Introduction

A mobile ad hoc network (MANET) is an autonomous system of mobile nodes connected by wireless links. In a MANET, it is assumed that the nodes are free to move randomly while being able to communicate with each other, often over multi-hop links, without the help of a fixed network infrastructure. Due to the mobility of the nodes, the network topology may change unpredictably leading to changes of wireless link status between nodes. The movement of a node out of, or into, the communication range of other nodes changes not only its neighbor relationships with those other nodes, but also all routes based on the relationships. Signaling overhead traffic for maintenance of routes for a MANET is proportional to the rate of such link changes. Thus the performance of a MANET is closely related to the efficiency of the routing protocol in adapting to changes in the network topology and the link status [1], [2].

A number of routing protocols for MANET have been proposed and many performance studies of the routing protocols are also available. Since, few MANETs have been deployed, most of these studies are simulation based. For performance evaluation of a routing protocol for a MANET using simulation, it is imperative to use an appropriate mobility model to simulate the motion of the nodes in a network, and many mobility models for MANET have been developed to meet this needs [3]–[7]. However, the use of many different mobility models without a unified quantitative “measure” of the mobility has made it very difficult to compare the results of independent performance studies of routing protocols. For example, assume A evaluates the performance of routing protocol R1 using mobility model M1, and B evaluates the performance of routing protocol R2 using mobility model M2. Since two different mobility models are used, it is very difficult to draw a conclusion of which routing protocol performs better from the results of A and B. Thus, to make the comparison possible, it is necessary to have some index of quantitative mobility measure of the network.

However, in studies published to date, there is no unified approach for quantifying the degree of mobility. For example, in [3] and [4] the average speed of the nodes is used to represent their mobility, while the maximum speed is used in [8]. The problem with using average or maximum speed as a measure of mobility is that the relative motion between the nodes is not reflected in such a measure; also, using the same average or maximum speed in different mobility models or in networks with different physical dimensions often leads to different rates of route changes. In [1] and [2], the performances of different routing protocols are compared using simulation with the random waypoint model, where the “pause time” is used to represent the degree of node mobility. However, the pause time is a parameter unique to the random waypoint model, and it is not the only parameter that affects the mobility in this model. In [6], the rate of link changes itself is used as a measure of mobility; in our view, this approach is not satisfactory because link change does not represent mobility in physical terms. Furthermore, as shown in Sect. 6, it is tricky to calculate an accurate estimation of the link change rate when the network is not in steady state.

The authors of [9] make a significant improvement to this situation by recognizing that not all node movement is relevant to MANET routing protocol assessment—for example, if all the nodes are moving at the same speed and in the same direction, the motion does not affect network topology. By defining a “mobility factor” that takes into account the relative motions of nodes, they show how this mobility factor...
is related to the number of link changes for a particular mobility model. However, among other drawbacks which we discuss below, we have found that the relationship of the mobility factor to the number of link changes is not the same for different mobility models. In [10], the influence of the patterns of node mobility to the routing protocol is also recognized and several protocol independent metrics are proposed to differentiate between different mobility patterns. However, the maximum speed of nodes is used as a measure of mobility in [10].

In this paper, we introduce a mobility measure for MANET that is “standard” in that it is flexible and consistent. It is flexible because one can customize the mobility measure using a remoteness function proposed in this paper. It is consistent because the mobility measure has a linear relationship with link change rate for a wide range of network scenarios. Since the link change reflects the change of network topology and affects the overall performance of the network, having a consistent linear relationship with the link change rate is a very important attribute of a mobility measure.

This paper is organized as follows. In Sect. 2, we introduce the concept of the remoteness of nodes. Then we propose a mobility measure using the concept of remoteness in Sect. 3. In Sect. 4, some widely used mobility models for MANET are introduced. These mobility models are used in Sect. 5 to develop various network scenarios for simulation. In Sect. 6, simulation results for various wireless network scenarios are shown and the consistency of the proposed mobility measure is evaluated. Section 7 is the conclusion of this paper.

2. The Concept of Remoteness

Let \(\mathbf{n}_i(t), i = 0, 1, \ldots, N - 1 \), represent the location vector of node \(i \) at time \(t \). Define \(d_{ij}(t) = | \mathbf{n}_i(t) - \mathbf{n}_j(t) | \) as the distance from node \(i \) to node \(j \) at time \(t \). Then, the remoteness of node \(i \) from node \(j \) at time \(t \) is defined as

\[
R_{ij}(t) = F(d_{ij}(t)),
\]

where \(F(\cdot) \) is a function of the distance. The simplest choice for \(F(\cdot) \) is the identity function, that is, the remoteness is just the distance between the nodes. However, in applications such as MANET, a more sophisticated definition of remoteness is more useful. For example, with a wireless node with communication range \(R \), a node located at a distance of three times \(R \) can be considered as remote as a node located at a distance of ten times \(R \). Similarly, if a node is well within the communication range \(R \), the node would not seem very remote even if the distance were doubled. On the other hand, if a node is in the vicinity of the communication range \(R \), the subjective remoteness of the node will dramatically vary as the movement of the node may change the wireless link status with the node. In the light of these observations, we require that \(F(\cdot) \) satisfy:

a. \(F(0) = 0 \), \(\lim_{x \to \infty} F(x) = 1 \);

b. \(\frac{dF(x)}{dx} \geq 0 \) for all \(x \geq 0 \);

c. \(\frac{dF(x)}{dx} |_{x=0} = 0 \);

d. \(\lim_{x \to \infty} \frac{dF(x)}{dx} = 0 \);

e. \(\frac{d^2F(x)}{dx^2} |_{x=R} \geq \frac{d^2F(x)}{dx^2} |_{x=0} \) for all \(x \geq 0 \).

Requirement (a) normalizes \(F(\cdot) \) to have unity maximum value. Requirement (b) guarantees that the remoteness is a monotonically increasing function of distance, and as a result \(0 \leq F(\cdot) \leq 1 \) from (a). Requirements (c) and (d) give the boundary condition of \(F(\cdot) \), which guarantee that the remoteness of a node at extreme locations does not change with the movement of the node. Finally, requirement (e) makes the remoteness most sensitive to the movement of a node at communication range.

One of the functions that satisfy all of the requirements is

\[
F(x) = \frac{1}{\Gamma(r)} \int_{0}^{x} (\lambda r)^{r-1} \lambda e^{-\lambda r} d\tau, \quad x \geq 0, \ r \geq 2
\]

with \(\lambda = (r - 1)/R \), where \(r \) can be a non-integer. Note that \(F(x) \) is the cumulative distribution function (cdf) of a gamma random variable with parameter \(r \), and thus

\[
f(x) = F'(x) = \frac{1}{\Gamma(r)} (\lambda x)^{r-1} \lambda e^{-\lambda x}.
\]

Figure 1 shows plots of \(F(x) \) and its derivative \(f(x) \) for various values of \(r \), where the communication range \(R \) is normalized to unity. As shown in the figure, larger \(r \) means more dramatic change of remoteness at the communication range. As a result, we can give more emphasis on the movement of the nodes at and near the communication range by choosing larger \(r \). Note that (2) is only one of many possible choices.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{gamma_cdf_pdfs.png}
\caption{Plots of gamma cdf and pdf functions for \(r = 2, 3, 4, 5 \), where \(\lambda = (r - 1)/R \) and \(R = 1 \). (\(F(x) \) and \(f(x) \) in (2) and (3))}
\end{figure}
of $F(x)$. Any function that satisfies the above requirements can be used to define the remoteness, which constitutes the flexibility of the proposed mobility measure.

3. The Proposed Mobility Measure

As the nodes move, the remoteness changes in time. Thus, we define the mobility measure of a wireless network in terms of the time derivatives of the remoteness as follows:

$$ M(t) = \frac{1}{N} \sum_{i=0}^{N-1} M_i(t), $$

(4)

where N is the number of nodes and

$$ M_i(t) = \frac{1}{N-1} \sum_{j=0}^{N-1} \left| \frac{d}{dt} F(d_{ij}(t)) \right|. $$

(5)

$M_i(t)$ is a measure of the relative movement of other nodes as seen by node i. Thus, the mobility measure $M(t)$ represents the average amount of the relative movement of the nodes in the network at time t. For a network in steady state, we can use the time average of the mobility measure defined as follows:

$$ M = \frac{1}{T} \int_{0}^{T} M(t) dt. $$

(6)

If we choose $F(\cdot)$ defined in (2), then

$$ M^G(t) = \frac{1}{N} \sum_{i=0}^{N-1} M^G_i(t), $$

(7)

where the superscript “G” means “gamma,” and

$$ M^G_i(t) = \frac{1}{N-1} \sum_{j=0}^{N-1} \left| d'_{ij}(t) \cdot f(d_{ij}(t)) \right|, $$

(8)

$$ d'_{ij}(t) = \text{the time derivative of } d_{ij}(t). $$

On the other hand, if we choose the identity function for $F(\cdot)$, the mobility measure can be written as

$$ M^I(t) = \frac{1}{N} \sum_{i=0}^{N-1} M^I_i(t), $$

(9)

where the superscript “I” means “identity,” and

$$ M^I_i(t) = \frac{1}{N-1} \sum_{j=0}^{N-1} \left| d'_{ij}(t) \right|. $$

(10)

$M^G(t)$ and $M^I(t)$ are both mobility measures normalized by the number of nodes N, and continuous functions of time that represent the quantitative measures of the relative motion between nodes at time t rather than the absolute motion. Note that (8) is a function of the time derivative of the distance weighted by a function of the distance. As shown in Fig. 1, since $f(x)$ has small values for $x \ll R$ or $x \gg R$, and has its maximum at $x = R$, the movements of the nodes around the vicinity of the communication range R is emphasized. That is, $M^G(t)$ takes advantage of the distance information between the nodes and suitable for applications such as MANET, a multi-hop wireless network where the communication range is an important factor of the network. However, the identity function does not satisfy the requirements given in Sect. 2. Thus, (10) is simply a function of the time derivative of the distance between nodes, and $M^I(t)$ represents a normalized total amount of the relative movement of the nodes in the entire network and is inappropriate for applications with multi-hop wireless links.

The mobility factor defined in [9] is similar to M^I, the time average of $M^I(t)$, but unlike M^I, it may give wrong information in some cases. For example, in Fig. 2, the simple network illustrated in (a) has higher mobility factor than the network illustrated in (b), while in fact the network in (b) has more node movement. This undesirable result is because the terms corresponding to the movements of the two nodes in (b) are combined linearly and cancel out each other in the calculation of the mobility factor.

4. Mobility Models

One of the essential characteristics of a good mobility measure is consistency. We use a variety of network scenarios based on widely used stochastic mobility models to evaluate the consistency of the proposed mobility measure. The mobility models used are the random waypoint mobility model [1], the random Gauss-Markov model [3], [4], and the reference point group mobility model [7].

In the random waypoint (RWP) model, a node selects a random destination uniformly distributed over a predefined region and moves to the destination at a random speed uniformly distributed between the minimum and maximum speed. Reaching the destination, after pausing for a certain period of time, the node selects a new random destination and speed.

In the random Gauss-Markov (RGM) model, each node is assigned a speed v and direction θ, and v and θ are updated every Δt as follows:
\[v(t + \Delta t) = \min(\max(v(t) + \Delta v, V_{\min}), V_{\max}), \]
\[\theta(t + \Delta t) = \theta(t) + \Delta \theta, \]

where \(V_{\min} \) and \(V_{\max} \) are the minimum and maximum speed of the node, and \(\Delta v \) and \(\Delta \theta \) are random variables with uniform distribution over the intervals \([-\Delta v_{\max}, \Delta v_{\max}]\) and \([-\Delta \theta_{\max}, \Delta \theta_{\max}]\), respectively. When a node reaches a boundary, the node reflects off the boundary by choosing a new random direction. However, the updates of the \(v \) and \(\theta \) can be implemented in various ways. For another example of the implementation of the RGM model, see [4].

In the reference point group mobility (RPGM) model, each group of nodes has a logical center, which defines the group’s motion behavior such as location, speed, direction, etc. Thus, the trajectory of a group is determined by the trajectory of its logical center, which is given by a sequence of check points. As time goes by, the logical center of a group keeps moving from one check point to the next. In addition to the logical center, the RPGM model defines a reference point and a random motion vector for each node in a group. A reference point is a point about which a node moves in random fashion, and is pre-defined for each node with respect to the logical center. The random motion of a node is determined by a random motion vector, which represents the random deviation of a node from the reference point. The random motion vector is updated periodically and is given by the length and the direction which have uniform distributions over the intervals \([0, R_{\text{max}}]\) and \([0, 2\pi]\), respectively. Let \(\mathbf{n}(t_0) \) be the location vector of a node of the RPGM model at \(t = t_0 \); then

\[\mathbf{n}(t_0) = \mathbf{c}(t_0) + \mathbf{RP} + \mathbf{RM}(t_0), \]

where \(\mathbf{c}(t_0) \) is the location vector of the logical center of the group at \(t = t_0 \), \(\mathbf{RP} \) is a vector from the logical center to the reference point, and \(\mathbf{RM}(t_0) \) is the random motion vector at \(t = t_0 \). Let \(\tau \) be the update interval of the random motion vector; then at \(t = t_0 + \tau \),

\[\mathbf{n}(t_0 + \tau) = \mathbf{c}(t_0 + \tau) + \mathbf{RP} + \mathbf{RM}(t_0 + \tau). \]

For \(t_0 \leq t \leq t_0 + \tau \), \(\mathbf{n}(t) \) is given by

\[\mathbf{n}(t) = \frac{(t_0 + \tau - t) \cdot \mathbf{n}(t_0) + (t - t_0) \cdot \mathbf{n}(t_0 + \tau)}{\tau}. \]

Figure 3(c) depicts the movement of the RPGM model for a group with three nodes.

Figures 3(a), (b), and (d) illustrate the typical traveling patterns of a mobile node(s) moving in the RWP, RGM, and RPGM models, respectively. The larger spacing between the dots means higher speed of the node. The RWP model has a higher spatial node distribution at the center of the network than the boundaries [11], while the RGM model has a relatively uniform spatial node distribution over the entire network. Moving at the same speed, RWP node will travel farther than RGM node for the same time duration due to the traveling pattern. Figure 3(d) illustrates a group of three nodes in the RPGM model with the logical center moving according to the RWP model. Also shown is the trajectory of the logical center of the group.

5. Network Scenarios

Three different types of network scenarios are used to evaluate the proposed mobility measure. The network scenarios are designed to represent a variety of networks with different motion characteristics to evaluate the consistency of the proposed mobility measure. For convenience, all physical dimensions are normalized by the communication range \(R \). Thus, “distance 2” means the distance of two times \(R \). Similarly, “speed 0.5” means the traveling speed of 0.5\(R \) per second. For both RWP and RGM models, the minimum speed \(V_{\min} = 0.1 \) and the maximum speed \(V_{\max} = 1 \) are used. For the RGM model, the speed \(v \) and the direction \(\theta \) are updated every \(\Delta t = 0.2 \) seconds, where \(\Delta v_{\max} = 0.1 \) and \(\Delta \theta_{\max} = 0.1 \pi \).

The first type of network scenario involves a group of nodes randomly moving in a square region. By various combinations of the mobility model, dimension of the region, number of nodes \(N \), pause time (in the case of the RWP model), a variety of network scenarios is

\[\text{Fig. 3 Typical traveling patterns of a mobile node(s) moving in (a) RWP model, (b) RGM model, and (d) RPGM model. (c) Description of RPGM model.} \]
Table 1 Network scenarios used in simulation.

(a) Type 1: randomly moving nodes in a square region.

<table>
<thead>
<tr>
<th>Random Waypoint</th>
<th>Random Gauss-Markov</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>pause</td>
</tr>
<tr>
<td>dimension N</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>6 x 6</td>
</tr>
<tr>
<td>S2</td>
<td>6 x 6</td>
</tr>
<tr>
<td>S3</td>
<td>6 x 6</td>
</tr>
<tr>
<td>S4</td>
<td>5 x 5</td>
</tr>
<tr>
<td>S5</td>
<td>4 x 4</td>
</tr>
<tr>
<td>S6</td>
<td>6 x 6</td>
</tr>
<tr>
<td>S7</td>
<td>6 x 6</td>
</tr>
</tbody>
</table>

(b) Type 2: groups randomly moving in RPGM model.

<table>
<thead>
<tr>
<th>Description</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>5 groups, 7 nodes/group (total of 35 nodes),</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimension N</td>
<td>R(P)= 0 for node (n = 0),</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pause</td>
<td>(</td>
<td>R(P)</td>
<td>= 0.25, (</td>
<td>R(P)</td>
<td>= (n \cdot 60°), (n = 1, \ldots, 6),</td>
</tr>
<tr>
<td>time</td>
<td>R(M)(\text{max}) = 0.25 (small intra-group motion).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM(\text{max})</td>
<td>7 groups, 5 nodes/group (total of 35 nodes),</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logical center</td>
<td>R(P)= 0 for all nodes,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>speed</td>
<td>R(M)(\text{max}) = 0.5 (large intra-group motion).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Type 3: convention scenario C1.

<table>
<thead>
<tr>
<th>presentation group</th>
<th>tour group</th>
</tr>
</thead>
<tbody>
<tr>
<td># groups</td>
<td>16</td>
</tr>
<tr>
<td># nodes/group</td>
<td>3</td>
</tr>
<tr>
<td>(R)(P)</td>
<td>((r, \theta): r \sim U[0, 0.3] \theta \sim U[0, 2\pi])</td>
</tr>
<tr>
<td>RM(\text{max})</td>
<td>0.4</td>
</tr>
<tr>
<td>logical center</td>
<td>fixed</td>
</tr>
<tr>
<td>speed</td>
<td>0.5</td>
</tr>
<tr>
<td>pause time</td>
<td>(\sim U[0, 0.3])</td>
</tr>
</tbody>
</table>

\(^1\) The arrival process of the tour groups is Poisson.

generated as shown in Table 1(a). For example, scenario S6 has 40 nodes moving in RWP model with pause time 2.0 seconds in \(6 \times 6\) square region, and scenario T4 has 40 nodes moving in RGM model in \(6 \times 6\) square region.

The second type of network scenario uses the RPGM model moving in a \(6 \times 6\) square region. For the trajectory of the logical center of each group, the RWP model is used with \(V_{\text{min}} = 0.1\), \(V_{\text{max}} = 1\), and a random pause time of uniform distribution \(U[0, 0.5]\). The update interval \(\tau = 1\) second is used for the random motion vector. Table 1(b) summarizes the type 2 network scenarios. In scenario G1, there are 5 groups each consisting of 7 nodes (total of 35 nodes). In each group, one of the reference points of the nodes is located at the logical center of each group, and the other 6 reference points are located at the corners of a regular hexagon centered at the logical center with the length of its side 0.25. The length of the random motion vector has a uniform distribution \(U[0, 0.25]\), that is \(R\(M\)\(\text{max}\) = 0.25. Scenario G2 has 7 groups each consisting of 5 nodes (total of 35 nodes). All reference points of the 5 nodes are located at the logical center of the group the nodes belong to. Scenario G2 allows more intra-group motion compared to scenario G1 by having \(R\(M\)\(\text{max}\) = 0.5). Scenario G3 consists of 3 groups from scenario G1 and 4 groups from G2, resulting in a total of 41 nodes. Scenarios G4 and G5 are composed of 3 RPGM model groups from scenario G1 put together with 20 individual nodes of RWP and RGM models, respectively.

The third type of network scenario is a convention scenario using RPGM model shown in Fig. 4. This scenario emulates a typical convention event, where there are presentation groups and tour groups. In our scenario, there are 16 presentation groups with 3 nodes in each group. The logical centers of the presentation groups are located at \((i, j), \ i, j = 1, 2, 3, 4\), as shown in Fig. 4 and do not move. The reference points of the three nodes are randomly located within a circle of radius 0.3 centered at the logical center of the group the nodes belong to, where the distance and direction from the logical center to each reference point have uniform distributions \(U[0, 0.3]\) and \(U[0, 2\pi]\), respectively. For the random motion of the nodes, \(R\(M\)\(\text{max}\) = 0.4) is used. The tour groups arrive and enter the convention area according to a Poisson arrival process with arrival rate 0.095301 groups/sec. The arrival rate is determined to make the average number of tour groups the same as the number of presentation groups. The logical center of a tour group moves from the logical center of one presentation group to the next at a random speed of uniform distribution \(U[0.1, 0.3]\) along the gray trajectory illustrated in Fig. 4. The number of nodes for each tour group is selected from 1, 2, 3, or 4 with equal probability. All reference points of the nodes in a tour
group are located at the logical center of the tour group. RMmax = 0.5 is used for the tour groups. Upon arrival at the next presentation group, a tour group stays for a random time duration in seconds of uniform distribution \(U[0, 10]\) before it moves to the next presentation group. After visiting the last presentation group, a tour group leaves the convention area. Because of the arrival and leaving of the tour groups, the number of nodes in the network is a random variable. See Table 1(c) for the summary of the mobility model parameters.

6. Simulation Results

For each network scenario, the normalized link change rate is compared with the mobility measures. Because \(M^G(t)\) and \(M^I(t)\) are mobility measures normalized by the number of nodes \(N\), the link change rate is also normalized. To be specific, since there are \(N_C^G = N(N - 1)/2\) node pairs in a network with \(N\) nodes, the link change rate is divided by \(N(N - 1)/2\). For all scenarios, 500 seconds of warm up time was used to let the network reach steady state before 500 seconds of simulations. Since it is assumed that the network is in steady state, the time averages of the mobility measures and the normalized link change rate are used in the comparison. As discussed below, \(M^G\) and the time average of the normalized link change rate show strong linear relationship for the entire network scenarios.

For the time average of the mobility measures, \(M^G\) and \(M^I\), (6) is approximated by taking \(M^G(t)\) and \(M^I(t)\) every 0.01 seconds and averaging in time.

Unlike the mobility measure, link changes are events occurring at discrete times. To calculate the time average of the normalized link change rate, we define \(L(t)\) as the number of link changes occurred during the time interval \([0, t]\). Then

\[
l(t) = \frac{dL(t)}{dt} = \sum_k \delta(t - t_k),
\]

where \(t_k\) is the time instance of the \(k\)-th link change. The time average of the normalized link change rate is given by

\[
\bar{l} = \frac{1}{T} \int_0^T \frac{l(t)}{N(t)(N(t) - 1)} dt.
\]

If \(N(t)\) is a constant \(N\), (15) can be written as

\[
\bar{l} = \frac{2}{N(N - 1)} \frac{L(T)}{T}.
\]

If \(N(t)\) is a function of time, then from (14) and (15)

\[
\bar{l} = \frac{1}{T} \sum_{k=1}^T \frac{2}{N(t_k)(N(t_k) - 1)}.
\]

To calculate the average normalized link change rate, (16) is used for type 1 and 2 scenarios (S1, S2, \(\cdots\), S7, T1, T2, \(\cdots\), T5, and G1, G2, \(\cdots\), G5), and (17) is used for type 3 scenario (C1).

If the network is not in steady state, the normalized link change rate at time \(t\) is given by

\[
l(t) = \frac{1}{2\Delta t} \int_{t-\Delta t}^{t+\Delta t} \frac{l(\tau)}{N(\tau)(N(\tau)-1)} d\tau
\]

for some \(\Delta t\). However, the choice of \(\Delta t\) can be quite tricky. If \(\Delta t\) is too large, \(\bar{l}(t)\) cannot represent the time dependence of the link change rate accurately. If \(\Delta t\) is too small, \(\bar{l}(t)\) can be a poor estimate of the link change rate.

The simulation results show that \(M^G\) exhibits a consistent linear relationship with the average normalized link change rate for the entire network scenarios considered. On the other hand, though it is a considerable improvement over the existing mobility factor proposed in [9], \(M^I\) is affected by many factors in the network scenario such as the mobility model used and the physical dimension of the network, and displayed little linear relationship with the average normalized link change rate.

Figure 5(a) shows the simulation results for the mobility measure \(M^G\) with parameter \(r = 3\). As shown in the figure, the average normalized link change rate \(l\) show a strong linear relationship with \(M^G\) for the entire network scenarios of type 1, 2, and 3. Note that, for type 1 scenarios with RWP and RGM models, the linear relationship is well maintained for the changes in the number of nodes \(N\) (RWP: S1–S2–S3, RGM: T1–T2–T3), the physical dimension of the network (RWP: S2–S4–S5, RGM: T2–T4–T5), and the pause time (RWP: S2–S6–S7). In type 2 scenarios with RPGM model, while the groups of G1 and G2 have statically the same logical center movement, G2 has more intra-group node movement than G1 has. As a result, G2 results in larger link change rate and mobility measure \(M^G\) than G1 does. As expected, for scenario G3 where two different kinds of groups from G1 and G2 are mixed, the resulting \(M^G\) and \(l\) are larger than for G1 but smaller than for G2. C1 represents the convention scenario. During the 500 second simulation time, on average there were 81.8 nodes, 16.1 tour groups in the convention area, and the average tour time for a group was 167.8 seconds. The result for scenario C1 also shows reasonable consistency with the results for other scenarios.

As discussed in Sect. 2, by using larger \(r\), we can give more weight to the movements of the nodes near the communication range \(R\). Figure 5(b) shows the simulation results for the mobility measure \(M^G\) with parameter \(r = 5\). As shown in the figure, the relationship between \(l\) and \(M^G\) is even more linear than it is observed in Fig. 5(a). While this is a desirable property, one possible drawback of using larger \(r\) is that the mobility measure loses its sensitivity to the movements of nodes in distance.
As shown in Fig. 5(c), unlike the mobility measure M^G, M^I exhibits little linear relationship with l. For example, while M^I shows no significant changes for different physical dimensions of the network, the link change rate increases considerably as the physical dimension of the network decreases (RWP: S2–S4–S5, RGM: T2–F4–T5). Furthermore, M^I is affected by the choice of mobility model used. Comparing the scenarios with RWP model (S1–S5) with the scenarios with RGM model (T1–T5), we notice that scenarios with RGM model result in larger M^I but smaller link change rate than the corresponding scenarios with RWP model. This tendency of RGM model giving larger M^I is also observed between G4 and G5, where RPGM model is mixed with RWP and RGM models respectively. This is due to the difference of the traveling pattern of a node in RWP and RGM models. The traveling pattern of a node in RWP model moves following a piecewise straight path, and thus travels farther than a node moving in RGM model traveling at the same speed for the same time period resulting in higher probability of link change. The lack of consistency of M^I can be attributed to the inability of M^I to regulate the effect of the atypical characteristics of each network scenario.

7. Conclusion

In this paper, we proposed a canonical mobility measure for MANETs. The consistency of the proposed mobility measure was demonstrated by the consistent linear relationship between the mobility measure and the link change rate for various simulation scenarios. The proposed mobility measure provides a unified means of measuring the degree of mobility in a MANET, offering researchers of MANET a reference with the help of which independent studies of network performance can be compared.

References

Byung-Jae Kwak received the B.S. and M.S. degree in Electronic Engineering from Yonsei University, Seoul, Korea, in 1989 and 1991, respectively. He received the Ph.D. degree in Electrical Engineering and Computer Science from The University of Michigan, Ann Arbor, MI, in 2000. From 1991 to 1992, he was with the Engineering Research Institute, Yonsei University, where he was involved in analysis and development of sonar systems. In 2000, he joined the Telecommunication R&D Center, Samsung Electronics, Korea, where he participated in the standardization of 3G mobile communication systems (3GPP). Since 2001, he has been with the Advanced Network Technologies Division at the National Institute of Standards and Technology, USA. His research interests include wireless communication, mobile ad hoc networks, and adaptive signal processing.

Nah-Oak Song received her B.S. and M.S. degrees from Yonsei University, Seoul, Korea, in 1989 and 1993, respectively. She received the Ph.D. degree from the University of Michigan, Ann Arbor, MI, in 1999. From 1989 to 1991, she was with the Application Specific Integrated Circuit Research Institute, Yonsei University, where she was involved in a project on echo cancellation. From 1999 to 2001, she was at the Telecommunication R&D Center, Samsung Electronics, Korea, and participated in the development of CDMA 2000 system. Since 2001, she has been working in the Advanced Network Technologies Division at the National Institute of Standards and Technology, USA. Her main interest is in wireless networks with emphasis on mobile ad hoc networks and wireless LAN. Her other interests include medium access control protocol, Quality of Service, stochastic scheduling, and MPLS.

Leonard E. Miller was born in Washington, DC, in 1942. He received the B.E.E. degree from Rensselaer Polytechnic Institute, Troy, NY, in 1964, the M.S.E.E. degree from Purdue University, West Lafayette, IN, in 1966, and the Ph.D. degree from The Catholic University of America, Washington, DC, in 1973. While at Rensselaer, he worked as a co-op student at the General Electric Company, Syracuse, NY. From 1964 to 1978, he was with the Naval Surface Warfare Center, Silver Spring, MD, where he was a member of the Signal Processing Branch. From 1978 to 2000, he was with J.S. Lee Associates, Inc., Rockville, MD, where he was Vice President for Research and was involved initially in analyzing military electronic support and communications systems regarding their performance and survivability, and later in modeling propagation in the mobile environment and the design and analysis of cellular and personal communication systems. Since 2000, he has been a member of the Wireless Communication Technologies Group, National Institute of Standards and Technology, Gaithersburg, MD, where he is responsible for analysis and simulation of mobile ad hoc wireless networks. Currently, he is also participating in the development of IEEE standards for high-rate wireless personal area networks. Dr. Miller is coauthor (with Dr. J.S. Lee) of CDMA Systems Engineering Handbook (Norwood, MA: Artech House, 1998).