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1 Derivative of the distance between two nodes

node A : (x1, y1) −→ velocity vA : (ẋ1, ẏ1)
node B : (x2, y2) −→ velocity vB : (ẋ2, ẏ2)

dAB =
√

(x2 − x1)2 + (y2 − y1)2 = distance between A and B

vAB = vB − vA

Note that d
dtdAB , the time derivative of the distance dAB , is a scalar, while vAB is a a vector. Since a

motion orthogonal to the vector
→
AB does not cause any distance change between nodes A and B, from the

figure above:
d

dt
dAB = vAB · uAB (an inner product)

= (ẋ2 − ẋ1, ẏ2 − ẏ1) · (x2 − x1, y2 − y1)√
(x2 − x1)2 + (y2 − y1)2

(1)

=
1

dAB

(
(ẋ2 − ẋ1)(x2 − x1) + (ẏ2 − ẏ1)(y2 − y1)

)
,

where

uAB =

→
AB

|
→
AB|

=

→
AB

dAB

is a unit vector in direction
→
AB. The same result can also be obtained by a simple derivative as follows:

d

dt
dAB =

d

dt

√
(x2 − x1)2 + (y2 − y1)2.

However, if dAB → 0, we have a problem! If vA = vB , we have a trivial solution d
dtdAB = 0. Assume

vA 6= vB . Without loss of generality, assume node A and B are at the origin at t = t0, and the velocity of
nodes A and B are vA and vB , respectively. For arbitrarily small ∆t > 0, at t = t0 + ∆t, the velocities and
the locations of nodes A and B are

vA = (ẋ1 + ẍ1∆t, ẏ1 + ÿ1∆t)
vB = (ẋ2 + ẍ2∆t, ẏ2 + ÿ2∆t)

A =
(
ẋ1 +

1
2
ẍ1∆t , ẏ1 +

1
2
ÿ1∆t

)
∆t

B =
(
ẋ2 +

1
2
ẍ2∆t , ẏ2 +

1
2
ÿ2∆t

)
∆t
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From equation (1),

d

dt
dAB = lim

∆t→0

(
ẋ2 + ẍ2∆t− ẋ1 − ẍ1∆t , ẏ2 + ÿ2∆t− ẏ1 − ÿ1∆t

)
·

(
ẋ2 + 1

2 ẍ2∆t− ẋ1 − 1
2 ẍ1∆t , ẏ2 + 1

2 ÿ2∆t− ẏ1 − 1
2 ÿ1∆t

)√(
ẋ2 + 1

2 ẍ2∆t− ẋ1 − 1
2 ẍ1∆t

)2 +
(
ẏ2 + 1

2 ÿ2∆t− ẏ1 − 1
2 ÿ1∆t

)2 (2)

= (ẋ2 − ẋ1, ẏ2 − ẏ1) · (ẋ2 − ẋ1, ẏ2 − ẏ1)√
(ẋ2 − ẋ1)2 + (ẏ2 − ẏ1)2

=
√

(ẋ2 − ẋ1)2 + (ẏ2 − ẏ1)2.

If ẋ2 = ẋ1 but ẏ2 6= ẏ1 then
d

dt
dAB =| ẏ2 − ẏ1 |,

if ẋ2 6= ẋ1 but ẏ2 = ẏ1 then
d

dt
dAB =| ẋ2 − ẋ1 | .

But, if we choose ∆t = −∆τ < 0, then at t = t0 + ∆t = t0 −∆τ ,

vA = (ẋ1 − ẍ1∆τ, ẏ1 − ÿ1∆τ)
vB = (ẋ2 − ẍ2∆τ, ẏ2 − ÿ2∆τ)

A = −
(
ẋ1 −

1
2
ẍ1∆τ , ẏ1 −

1
2
ÿ1∆τ

)
∆τ

B = −
(
ẋ2 −

1
2
ẍ2∆τ , ẏ2 −

1
2
ÿ2∆τ

)
∆τ

Then

d

dt
dAB = lim

∆τ→0

(
ẋ2 − ẍ2∆τ − ẋ1 + ẍ1∆τ , ẏ2 − ÿ2∆τ − ẏ1 + ÿ1∆τ

)
·

(
−ẋ2 + 1

2 ẍ2∆τ + ẋ1 − 1
2 ẍ1∆τ , −ẏ2 + 1

2 ÿ2∆τ + ẏ1 − 1
2 ÿ1∆τ

)√(
−ẋ2 + 1

2 ẍ2∆τ + ẋ1 − 1
2 ẍ1∆τ

)2 +
(
−ẏ2 + 1

2 ÿ2∆τ + ẏ1 − 1
2 ÿ1∆τ

)2
= −(ẋ2 − ẋ1, ẏ2 − ẏ1) · (ẋ2 − ẋ1, ẏ2 − ẏ1)√

(ẋ2 − ẋ1)2 + (ẏ2 − ẏ1)2

= −
√

(ẋ2 − ẋ1)2 + (ẏ2 − ẏ1)2.

If ẋ2 = ẋ1 but ẏ2 6= ẏ1 then
d

dt
dAB = − | ẏ2 − ẏ1 |,

if ẋ2 6= ẋ1 but ẏ2 = ẏ1 then
d

dt
dAB = − | ẋ2 − ẋ1 | .

Therefore, when two nodes meet at t = t0, the derivative of the distance between the nodes can be illustrated
by the following figure:
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That is, if A and B meet at t = t0

d

dt
dAB < 0 for t < t0;

d

dt
dAB > 0 for t > t0;

undefined at t = t0.

In our simulation, we choose

d

dt
dAB < 0 for t < t0;

d

dt
dAB ≥ 0 for t ≥ t0.

Note: The time derivative of d
dtdAB is a discontinuous function of time where the discontinuities occur when

two nodes meet in space. It is not an error if your code generates a discontinuous function!

Pseudo code 1

If node A and B are the same nodes, then
return 0

else
if node A and B are NOT at the same location

return vAB ·
→
AB

|
→
AB|

else (i.e., A and B are at the same location)
if vA = vB then

return 0
else

return
√

(ẋ2 − ẋ1)2 + (ẏ2 − ẏ1)2

In reality, the scenario described above does not occur (it happens with probability 0). It is more likely
that two nodes can get close but do not actually meet. However, if two nodes get very close, a numerical
problem can occur.
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Assume A and B are extremely close at t = t0, then using (1) will cause a numerical instability due to the
division by dAB . At time t = t0

vA = (ẋ1, ẏ1)
vB = (ẋ2, ẏ2)

A = (x1, y1) ≈ (x2, y2) = B

and at time t = t0 + ∆t

vA = (ẋ1 + ẍ1∆t , ẏ1 + ÿ1∆t)
vB = (ẋ2 + ẍ2∆t , ẏ2 + ÿ2∆t)

A =
(
x1 +

(
ẋ1 +

ẍ1∆t
2
)

∆t , y1 +
(
ẏ1 +

ÿ1∆t
2
)

∆t
)

B =
(
x2 +

(
ẋ2 +

ẍ2∆t
2
)

∆t , y2 +
(
ẏ2 +

ÿ2∆t
2
)

∆t
)

To avoid a numerical instability, we can use an approximation of (2) by substituting small ∆t instead of
taking an infinite limit of ∆t:

d

dt
dAB ≈

(
ẋ2 + ẍ2∆t− ẋ1 − ẍ1∆t , ẏ2 + ÿ2∆t− ẏ1 − ÿ1∆t

)
·

(
x2 + (ẋ2 + ẍ2∆t

2 )∆t− x1 − (ẋ1 + ẍ1∆t
2 )∆t , y2 + (ẏ2 + ÿ2∆t

2 )∆t− y1 − (ẏ1 + ÿ1∆t
2 )∆t

)√(
x2 + (ẋ2 + ẍ2∆t

2 )∆t− x1 − (ẋ1 + ẍ1∆t
2 )∆t

)2 +
(
y2 + (ẏ2 + ÿ2∆t

2 )∆t− y1 − (ẏ1 + ÿ1∆t
2 )∆t

)2
Since ∆t is very small, it is reasonable to assume that ẍi ≈ 0 and ÿi ≈ 0 for i = 1, 2 (i.e., the velocity remains
unchanged). Since (x1, y1) ≈ (x2, y2), the above equation can be further approximated as follows.

d

dt
dAB ≈ ( ẋ2 − ẋ1 , ẏ2 − ẏ1 ) ·

(
(ẋ2 − ẋ1)∆t , (ẏ2 − ẏ1)∆t

)√
(ẋ2 − ẋ1)2(∆t)2 + (ẏ2 − ẏ1)2(∆t)2

= ( ẋ2 − ẋ1 , ẏ2 − ẏ1 ) · ( ẋ2 − ẋ1 , ẏ2 − ẏ1 )√
(ẋ2 − ẋ1)2 + (ẏ2 − ẏ1)2

=
√

(ẋ2 − ẋ1)2 + (ẏ2 − ẏ1)2

Pseudo code 2
If node A and B are the same nodes, then

return 0
else

if dAB > εd

return vAB ·
→
AB

|
→
AB|

else (i.e., dAB ≤ εd)
if | vB − vA |≤ εv then

return 0
else

return
√

(ẋ2 − ẋ1)2 + (ẏ2 − ẏ1)2

The above pseudo code 2 can be simplified as follows:
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Pseudo code 3 (final)
If node A and B are the same nodes, then

return 0
else

if dAB > ε

return vAB ·
→
AB

|
→
AB|

else (i.e., dAB ≤ ε)
return

√
(ẋ2 − ẋ1)2 + (ẏ2 − ẏ1)2
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2 Mobility Models

2.1 Random Waypoint Model

In the random waypoint (RWP) model, a node selects a random destination uniformly distributed over
a predefined region and moves to the destination at a random speed uniformly distributed between the
minimum and maximum speed. Reaching the destination, after pausing for a certain period of time, the
node selects a new random destination and speed.

A typical trajectory of a node moving in Random Waypoint model is shown in the figure below, where
the right hand side figure shows the details of the region marked by a blue square.

Each symbol represents the location of a node:

at t = 0.1k, k = 0, 1, · · · at t = 0.1k, k = 0, 1, · · · (black circle)
at t = 0.3k, k = 0, 1, · · · (red ×)

Network dimension : (6× 6)
distribution of the random speed : U [0.1, 1]

pause time : 1 sec.
Note: All figures normalized by the communication range.

For more information, see

Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva, “A Performance
Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” Proc. IEEE/ACM Mobicom’98,
Oct. 1998.

2.2 Random Gauss-Markov Model

In the random Gauss-Markov (RGM) model, each node is assigned a speed v and direction θ, and v and θ
are updated every ∆t as follows:

v(t+ ∆t) = min[max(v(t) + ∆v, Vmin), Vmax],
θ(t+ ∆t) = θ(t) + ∆θ,

where Vmin and Vmax are the minimum and maximum speed of the node, and ∆v and ∆θ are random
variables with uniform distribution over the intervals [−∆vmax,∆vmax] and [−∆θmax,∆θmax], respectively.
When a node reaches a boundary, the node reflects off the boundary by choosing a new random direction.
However, the updates of the v and θ can be implemented in various ways. The following example implements
the model introduced in the Master’s thesis by Shukla. For another example of the implementation of the
RGM model, see the paper by Camp et al.

A typical trajectory of a node moving in Random Gauss-Markov model is shown in the figure below,
where the right hand side figure shows the details of the region marked by a blue square.
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Each symbol represents the location of a node:

at t = 0.1k, k = 0, 1, · · · at t = 0.1k, k = 0, 1, · · · (black circle)
at t = 0.3k, k = 0, 1, · · · (red ×)

Network dimension : (6× 6)
minimum node speed : 0.0
maximum node speed : 1.0

direction/speed update interval : 0.2 sec.
∆v : U [−0.1, 0.1]
∆θ : U [−0.1π, 0.1π]

Note: All figures normalized by the communication range.

For more information, see

Deepanshu Shukla, “Mobility Models in ad hoc networks,” Master’s thesis, KReSIT-ITT Bombay, Nov. 2001.

Tracy Camp, Jeff Boleng, and Vanessa Davies, “A Survey of Mobility for Ad Hoc Network Research,”
Wireless Communication & Mobile Computing (WCMC), Special issue on Mobile Ad Hoc Networking:
Research, Trends and Applications, 2002.

2.3 Reference Point Group Mobility Model

The implementation of the Reference Point Group Mobility (RPGM) model should be straightforward from
the examples shown above. For more information about RPGM, see

Byung-Jae Kwak, Nah-Oak Song, and L. E. Miller, “A Standard Measure of Mobility for Evaluating Mobile
Ad Hoc Network Performance,” IEICE Trans. Communication, vol.E86-B, no. 11, Nov. 2003.
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3 Mobility Measure

The mobility measure proposed in the paper is defined as follows.

M(t) =
1
N

N−1∑
i=0

Mi(t),

where N is the number of nodes and

Mi(t) =
1

N − 1

N−1∑
j=0

∣∣∣∣ ddtF (dij(t))
∣∣∣∣ .

Mi(t) is a measure of the relative movement of other nodes as seen by node i. In the paper (and in the
C code), we use notations MG(t) and M I(t) to represent the mobility measure with certain remoteness
function (‘G’ for Gamma, ‘I’ for identity).

Note that the proposed mobility measure is a function of time t. In a steady state network, the time
average of the measure is use for more reliable estimation of the mobility. However, for a network not in
steady state, the mobility measure as a function of time can be used to investigate a certain event at certain
time instance.

4 Single-hop link matrix

In the simulation, the link change rate is calculate by a single-hop link matrix and counting the changes of
the elements. If there are N nodes, the single-hop link matrix will be an (N ×N) matrix of integer values.
If there is a single hop link between node i and node j, the (i, j)-th element of the matrix has value 1. If
there is no single hop link between node i and node j, the (i, j)-th element of the matrix has value −1. Zero
means zero hops, so all (i, i)-th element of the matrix has zero.

Please take a look at the function RWP node single hop links() in the file function.c for more infor-
mation.
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5 Included Programs

way point mobility model.c
This program show a typical trajectory of a node moving in Random Waypoint mobility model.

A single node is moving in a rectangular region defined by [X MIN, X MAX, Y MIN, Y MAX].

The data for the figures in Section 2.1 are obtained using this program.

Bug: In Random Waypoint model, of the random velocity happens to be zero, the node will never be
able to reach the destination. Furthermore, a zero velocity causes a “divide by zero” problem. Thus,
in our simulation, the random velocity has a uniform distribution of [V MIN, V MAX], where V MIN > 0.

random gauss markov model.c
This program show a typical trajectory of a node moving in Random Gauss-Markov mobility model.

A single node is moving in a rectangular region defined by [X MIN, X MAX, Y MIN, Y MAX].

The data for the figures in Section 2.2 are obtained using this program.

mobility measure RWP.c
With mobile nodes moving in the Random Waypoint mobility model, this program calculates the
mobility measure, and the link change rate. The Gamma function and identity functions are considered
as remoteness functions in the mobility measure.

This program creates the following files:
RWP.log
RWP nodexxx.trace, where xxx = 000, 001, · · · , 039.

A sample run result, and the parameters used are as follows.

X MIN 0.000000 Y MIN 0.000000
X MAX 6.000000 Y MAX 6.000000
V MIN 0.100000 V MAX 1.000000

Nunber of nodes 40 Pause time 4.000000
(In gamma function) r 5.000000 M I 0.285408

normalized link changes rate 0.055205 MG 0.059631

The mobility measure MG = 0.059631 and the normalized link change rate = 0.055205 corresponds to
the point S7 in Fig.5(b) in the paper:

Byung-Jae Kwak, Nah-Oak Song, and L. E. Miller, “A Standard Measure of Mobility for Evaluating
Mobile Ad Hoc Network Performance,” IEICE Trans. Communication, vol.E86-B, no. 11, Nov. 2003.

mobility measure RGM.c
This program is the same as mobility measure RWP.c, except that this one uses Random Gauss-
Markov mobility model instead of Random Waypoint mobility model.

This program creates the following files:
RGM.log
RGM nodexxx.trace, where xxx = 000, 001, · · · , 039.

A sample run result, and the parameters used are as follows.

X MIN 0.000000 X MAX 6.000000
Y MIN 0.000000 Y MAX 6.000000
V MIN 0.100000 V MAX 1.000000

Nunber of nodes 40 ∆t 0.2 sec.
∆v 0.1 ∆θ 0.1π

(In gamma function) r 5.000000 M I 0.471999
normalized link change rate 0.062154 MG 0.068729

The mobility measure MG = 0.068729 and the normalized link change rate = 0.062154 corresponds to
the point T2 in Fig.5(b).
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5.1 Files

functions.c
functions.h
Makefile
mobility measure RGM.c
mobility measure RWP.c
node types.h
random gauss markov model.c
way point mobility model.c

Note: The function gamma pdf() defined in the file functions.c uses a function named lgamma() provided
in the GNU C Library. lgamma(double x) returns the natural logarithm of the absolute value∫ ∞

0

tx−1e−tdt.

The sign of the function is stored in the global variable signgam, which is declared in math.h. For more
information of the function, please read the reference manual available at www.gnu.org. If you cannot use
the GNU C Library for some reason, you can create your own gamma function (see Section 6.1, Numerical
Recipes in C, 2nd Ed.).

Warning: The programs are not optimized for speed.
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6 Mobility Measure vs. Link Change Rate

Most performance studies of the routing protocols for MANET use very simple model in their simulations.
In such simple models, link change rate can be used quite effectively as a mobility measure. However, as the
simulation models gets complicated, using link change rate as a mobility measure is not a feasible solution.

Many wireless communication links support multiple transmission rates using different modulation schemes.
Consider a wireless communication link with two transmission rate (link capacity) L1 and L2 as follows:

Modulation scheme 1 Modulation scheme 2
transmission rate L1 > L2

communication range R1 < R2

Assume two nodes are moving away from each other and the distance between them at time t = t1 is D1

(< R1), and the distance between them at time t = t2 > t1 is D2 and R1 < D2 < R2. At t = t2, there are
three possible scenarios in terms of link status between the two nodes:

✓ Broken If the original link (at time t = t1) was established at transmission rate L1 and the service
provided by the link cannot be supported by transmission rate L2.

✓ Alive but status changed If the original link was established at transmission rate L1 but switched to
a new rate L2 due to the distance change.

✓ Alive with no change If the original link was established at transmission rate L2.

How to deal with the link status changes in a MANET is a problem that needs to be addressed by the routing
protocol. However, more link status change means more routing overhead and it should be addressed in the
measure of the mobility. Obviously, using the link change rate as a mobility measure is not possible in this
example. One of the two strengths of the proposed mobility measure is the flexibility and it comes from the
comes from the flexibility of the remoteness function. Some of the possible examples of the remoteness func-
tion for the scenario illustrated above are as follows (Note: The following figures represent the derivatives
of the remoteness functions.):

Remarks In real wireless communication links, the transmission range and the carrier sense range are
different, and it causes hidden and exposed terminal problems. In a multi-hop wireless communication
environment such as MANET, the hidden and exposed terminal problems play more significant role compared
to a single-hop wireless communication environment such as WLAN. The remoteness function can be designed
to take this into account, but it requres good understanding of the effect of the hidden and exposed terminal
problems.
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